MECHANICAL WAVES

15.1. IDENTIFY: v=fA. T=1/f isthe time for one complete vibration.
SET Up: The frequency of the note one octave higher is 1568 Hz.

EXECUTE: (a) A= =202 ™S _ 0430 m T=L =128 ms.
f 784 Hz !
(b) gzlzwzo,mgm.
£ 1568 Hz

EVALUATE: When f'is doubled, A is halved.
15.2. IDENTIFY: The distance between adjacent dots is A. v = f'A. The long-wavelength sound has the lowest

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 kHz.
SET UP: For sound in air, v =344 m/s.

EXECUTE: (a)Red dots: A= Z- 344 m/s =172 m.
f 20.0Hz
Blue dots: A= Lm;s =0.0172 m=1.72 cm.
20.0x10° Hz
(b) In each case the separation easily can be measured with a meterstick.
1480 m/
(©) Red dots: A= =25 _740m.
f  20.0Hz
Blue dots: A= w =0.0740 m =7.40 cm. In each case the separation easily can be measured
20.0x10° Hz

with a meterstick, although for the red dots a long tape measure would be more convenient.
EVALUATE: Larger wavelengths correspond to smaller frequencies. When the wave speed increases, for a
given frequency, the wavelength increases.
15.3. IDENTIFY: v=fA=A/T.
SETUP: 1.0 h=3600 s. The crest to crest distance is A.

3
= 800X _ 220 s, v=B20KI g0 e,
3600 s 10 h

EVALUATE: Since the wave speed is very high, the wave strikes with very little warning.
15.4. IDENTIFY: fA=v

SETUP: 1.0 mm=0.0010 m

1
EXECUTE: f:K:&m/S:I.SXIO6 Hz
A 00010 m

EVALUATE: The frequency is much higher than the upper range of human hearing.
15.5. IDENTIFY: We want to relate the wavelength and frequency for various waves.
SET UP: For waves v= fA.

EXECUTE:
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EXECUTE: (a) v=344 m/s. For f=20,000 Hz, A=~ =—22MS 7 0 For f=20Hz,
f 20,000 Hz
== 344 m/s =17 m. The range of wavelengths is 1.7 cm to 17 m.
f  20Hz
8
(b) v=c=3.00x10%m/s. For A=700 nm, f=S= Mogm/s =43x10" Hz. For A =400 nm,
A 70010~ m
00x10° . e
f= LA L()gm/s =7.5x10'* Hz. The range of frequencies for visible light is 4.3 %10 Hz to
A 400x10”m
7.5x10' Hz.
(¢) v=>344 ms. J:X:L‘?S:l.s cm.
f  23x10° Hz
(d) v=1480 m/s. Z=L=M=6.4 cm.
J  23x10° Hz
EVALUATE: For a given v, a larger f corresponds to smaller A. For the same f, A increases when v

increases.

15.6. IDENTIFY: The fisherman observes the amplitude, wavelength, and period of the waves.
SET UP: The time from the highest displacement to lowest displacement is 7/2. The distance from
highest displacement to lowest displacement is 24. The distance between wave crests is A, and the speed

of the waves is v=fA=A/T.

EXECUTE: (a) T=2(2.5s)=5.0s. A=6.0m. v= 65'0 M 12 mss.

0s

(b) A=(0.62m)/2=0.31m
(c¢) The amplitude becomes 0.15 m but the wavelength, period and wave speed are unchanged.

EVALUATE: The wavelength, period and wave speed are independent of the amplitude of the wave.
15.7. IpENTIFY: Use Eq. (15.1) to calculate v. T =1/f and £ is defined by Eq. (15.5). The general form of the

wave function is given by Eq. (15.8), which is the equation for the transverse displacement.
SETUP: v=8.00 m/s, 4=0.0700 m, 41=0320 m

EXECUTE: (a) v=fA so f=v/A=(8.00 m/s)/(0.320 m)=25.0 Hz

T =1/f =1/25.0 Hz=0.0400 s

k=2m/A =27 rad/0.320 m =19.6 rad/m

(b) For a wave traveling in the —x-direction,

y(x, t)= Acos2x(x/A+1/T) (Eq. (15.8).)

Atx=0, y(0,1)=Acos2x(t/T), so y = A at t =0. This equation describes the wave specified in the problem.
Substitute in numerical values:

y(x, 1) =(0.0700 m)cos(27z(x/0.320 m +¢/0.0400 s)).

Or, y(x,t)=(0.0700 m)cos((19.6 mHx+(157 rad/s)t).

(¢) From part (b), y =(0.0700 m)cos(27z(x/0.320 m +¢/0.0400 s)).

Plugin x=0.360 m and r=0.150s:
¥ =1(0.0700 m)cos(27(0.360 m/0.320 m+ 0.150 s/0.0400 s))

¥ =(0.0700 m)cos[27(4.875 rad)] =+0.0495 m =+4.95 cm

(d) In part (c) £=0.150s.

y=A4 means cos(2r(x/A+t/T))=1

cos@=1 for =0, 2x, 4r,...=n(2x) or n=0,1, 2,...

So y=4 when 27(x/A+t/T)=n(27) or x/A+t/T=n
t=T(n—x/4)=(0.0400 s)(n—0.360 m/0.320 m) = (0.0400 s)(n—1.125)
For n=4, t=0.1150 s (before the instant in part (c))
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For n=5, t=0.1550s (the first occurrence of y = 4 after the instant in part (c)). Thus the elapsed time

is 0.1550 s —0.1500 s =0.0050 s.
EVALUATE: Part (d) says y =4 at 0.115 s and next at 0.155 s; the difference between these two times is

0.040 s, which is the period. At =0.150 s the particle at x=0.360 m is at y =4.95 cm and traveling
upward. It takes 7/4=0.0100 s for it to travel from y=0 to y = A4, so our answer of 0.0050 s is

reasonable.
15.8. IDENTIFY: Compare y(x,t) given in the problem to the general form of Eq. (15.4). f=1/T and v=fA4

SET UP: The comparison gives 4=6.50mm, A=28.0cm and 7 =0.0360s.
EXECUTE: (a) 6.50 mm
(b) 28.0cm

I
© /= G03605 ~ 28 H?

(d) v=(0.280 m)(27.8 Hz) =7.78 m/s

(e) Since there is a minus sign in front of the #7 term, the wave is traveling in the +x-direction.
EVALUATE: The speed of propagation does not depend on the amplitude of the wave.
15.9. IDENTIFY: Evaluate the partial derivatives and see if Eq. (15.12) is satisfied.

SET UP: aicos(kx + wt) =—ksin(kx + wr). %cos(kx + wt) = —wsin(kx + wt).
X

aisin(kx + wt) = kcos(kx + wr). %sin(kx + wt) = wcos(kx + wt).
X

2 2

EXECUTE: (a) 2-{ = —Ak? cos(kx + ot). z—zy =—Aw? cos(kx + o). Eq. (15.12) is satisfied, if v = w/k.
X t

2 2
(b) g—z =—Ak?sin(kx + o). ?)—zy =— A’ sin(kx + wt). Eq. (15.12) is satisfied, if v=a/k.
X t

(©) Y k4 sin(kx). oy =—k*Acos(kx). Y o4 sin(t). 2y =—w* Acos(wr). Eq. (15.12) is not
ox ox2 ot or?
satisfied.
@ v, = Y _ o cos(kx +wr). a, = Py = — A’ sin(kx + or)
y at Y atz

EVALUATE: The functions cos(kx+ wt) and sin(kx + wt) differ only in phase.

15.10.  IDENTIFY: The general form of the wave function for a wave traveling in the —x-direction is given by
Eq. (15.8). The time for one complete cycle to pass a point is the period 7 and the number that pass per
second is the frequency f. The speed of a crest is the wave speed v and the maximum speed of a particle in

the medium is v, = wA.

SET UP: Comparison to Eq. (15.8) gives 4=3.75 cm, k =0.450 rad/cm and @ =5.40 rad/s.
27z rad _ 2z rad
®  5.40rad/s
2rrad  2mrad
k  0.450 rad/cm
(b) £=0.450 rad/cm. f =1/T =0.862 Hz =0.862 waves/second.
(c) v=f1=(0.862 Hz)(0.140 m) =0.121 m/s. v,,,, = @4 =(5.40 rad/s)(3.75 cm) =0.202 m/s.
EVALUATE: The transverse velocity of the particles in the medium (water) is not the same as the velocity
of the wave.
15.11.  IDENTIFY and SET UP: Read 4 and T from the graph. Apply Eq. (15.4) to determine A and then use
Eq. (15.1) to calculate v.

EXECUTE: (a) The maximum y is 4 mm (read from graph).
(b) For either x the time for one full cycle is 0.040 s; this is the period.

EXECUTE: (a) T =

=1.16 s. In one cycle a wave crest travels a distance

A= =0.140 m.
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15.12.

15.13.

(¢) Since y=0 for x=0 and =0 and since the wave is traveling in the +x-direction then

y(x, t) = Asin[272(t/T — x/A)]. (The phase is different from the wave described by Eq. (15.4); for that wave
y=4 for x=0, t=0.) From the graph, if the wave is traveling in the +x-direction and if x=0 and
x=0.090 m are within one wavelength the peak at 1 =0.01s for x=0 moves so that it occurs at
t=0.035 s (read from graph so is approximate) for x =0.090 m. The peak for x =0 is the first peak past
t =0 so corresponds to the first maximum in sin[27z(¢/T —x/A)] and hence occurs at

272(¢t/T — x/A) = /2. If this same peak moves to # =0.035 s at x; =0.090 m, then

27(t/T — xIA) = /2.

Solve for A: /T —x;/A=1/4

x/A=4/T -1/4=0.035 s/0.040 s —0.25=0.625

A =x/0.625=0.090 m/0.625=0.14 m.

Then v=fA=A/T =0.14 m/0.040 s =3.5 m/s.

(d) If the wave is traveling in the —x-direction, then y(x, t) = 4sin(27z(t/T + x/A)) and the peak at ¢ =0.050's
for x =0 corresponds to the peak at #; =0.035 s for x; = 0.090 m. This peak at x =0 is the second peak past
the origin so corresponds to 277(#/T + x/A) = 57/2. If this same peak moves to #; =0.035 s for x; =0.090 m,
then 272(t)/T + x,/A) = 57/2.

H/T +x/A=5/4

x/A=5/4—-4/T =5/4-0.0355/0.040 s =0.375
A=x/0.375=0.090 m/0.375=0.24 m.

Then v= fA=A/T =0.24 m/0.040 s = 6.0 m/s.

EVALUATE: (e) No. Wouldn’t know which point in the wave at x =0 moved to which point at x =0.090 m.

IDENTIFY: v, = B_y v=fA=UT.
ot

SET UP: iAcos(z—”(x - vt)j = +A(ﬂ)sin(2—”(x - vt)j
ot A A A

t 2 A 2
EXECUTE: (a) Acos 27[(2 - —j =+4 cos—”(x - —tj =+4 cos—”(x — vt) where i = Af =v has been used.
AT A T A T

dy 2mv
b) v, == ="""
®) v a A
(c) The speed is the greatest when the sine is 1, and that speed is 2zvA/A. This will be equal tov if
A=A/2x, less than v if 4 <A/2x and greater than v if 4> 4/27.

EVALUATE: The propagation speed applies to all points on the string. The transverse speed of a particle of
the string depends on both x and ¢.

IDENTIFY: Follow the procedure specified in the problem.

SET UP: For A and x in cm, v in cm/s and ¢ in s, the argument of the cosine is in radians.

EXECUTE: (a) t=0:

x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00
y(cm) 0.300 0.212 0 -0.212  -0.300 -0.212 0 0.212 0.300
The graph is shown in Figure 15.13a.

(b) (i) t=0.400 s:

x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00
y(cm) -0.221 -0.0131  0.203 0.300 0.221 0.0131 -0.203 -0.300 —0.221
The graph is shown in Figure 15.13b.

(i1) £=0.800 s:

x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00
y(cm) 0.0262 —-0.193  -0.300 —-0.230 —-0.0262 0.193 0.300 0.230  0.0262
The graph is shown in Figure 15.13c.

(iii) The graphs show that the wave is traveling in the +x-direction.

sin 27” (x —vt).
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Mechanical Waves 15-5

EVALUATE: We know that Eq. (15.3) is for a wave traveling in the +x-direction, and y(x,¢) is derived

from this. This is consistent with the direction of propagation we deduced from our graph.

6.0 12.0

(a)

r=0400s ] ] ] i |
6.0 12.0
L

(b)

1= 0.800s —™ : |l ll | | | | .
6.0 12.0

(©)
Figure 15.13

15.14.  IDENTIFY: vy, and a, are given by Egs. (15.9) and (15.10).
SET UP: The sign of v, determines the direction of motion of a particle on the string. If v, =0 and
a, #0 the speed of the particle is increasing. If v, # 0, the particle is speeding up if v, and a, have the

same sign and slowing down if they have opposite signs.
EVALUATE: (a) The graphs are given in Figure 15.14.

(b) (i) v, = wAsin(0) =0 and the particle is instantaneously at rest. a, = —w*A cos(0) = —w’ A and the
particle is speeding up.

(ii) v, = @Asin(7/4) = A/N2, and the particle is moving up. a, =-w”4 cos(/4) =—a 4//2, and the
particle is slowing down (v, and a,, have opposite sign).

(iii) v, = @A4sin(z/2) = @A and the particle is moving up. a, = -0’4 cos(z/2) =0 and the particle is
instantaneously not accelerating.

(iv) v, = wAsin(37/4) = wA/ V2, and the particle is moving up. a, = —w*A cos(37/4) = @*A/N2, and the
particle is speeding up.
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(v) v, =wAsin(z) =0 and the particle is instantaneously at rest. a,, = —w*A cos() = @*4 and the particle
is speeding up.
(vi) v, =@A sin(57z/4) = —wA/N?2 and the particle is moving down. a, =—w’A cos(5z/4)=w >4/\2 and

the particle is slowing down (v, and a,, have opposite sign).

(vii) v, = wAsin(37/2) = - @A and the particle is moving down. a, = -® Acos(37r/ 2) =0 and the particle
is instantaneously not accelerating.

(viii) v, = wA4sin(77/4) = —wA/N2, and the particle is moving down. a,, = - ? Acos(7m/4) = - NG
and the particle is speeding up (v, and a, have the same sign).

EVALUATE: At =0 the wave is represented by Figure 15.10a in the textbook: point (i) in the problem
corresponds to the origin, and points (ii)—(viii) correspond to the points in the figure labeled 1-7. Our
results agree with what is shown in the figure.

Figure 15.14

15.15. IDpENTIFY and SET UP: Use Eq. (15.13) to calculate the wave speed. Then use Eq. (15.1) to calculate the
wavelength.
EXECUTE: (a) The tension F in the rope is the weight of the hanging mass:

F =mg =(1.50 kg)(9.80 m/s*)=14.7 N

v=1[F/u = /14.7 N/(0.0550 kg/m) =16.3 m/s
() v=fA so A=v/f =(16.3 m/s)/120 Hz=0.136 m.

(¢) EVALUATE: v=./F/u, where F =mg. Doubling m increases v by a factor of V2. A= v/f. fremains

120 Hz and v increases by a factor of V2, so 4 increases by a factor of V2.
15.16. IDENTIFY: The frequency and wavelength determine the wave speed and the wave speed depends on the tension.

SET UP: vz\/z. u=m/L.v=fA.
u

EXECUTE: F = yv _y(fxi) = 02152(()) kg( 40.0 Hz][0.750 m])2 =432 N

EVALUATE: If the frequency is held fixed, increasing the tension will increase the wavelength.
15.17. IDENTIFY: The speed of the wave depends on the tension in the wire and its mass density. The target
variable is the mass of the wire of known length.

SETUP: v= \/E and u=m/L.
U

EXECUTE: First find the speed of the wave: v= 380m _ 7724 m/s. v= E
0.0492 s y7i

2
U= 52 _(54.0ke)O8 HZS ) ~0.08870 ke/m. The mass of the wire is
v (77.24 m/s)
m = uL =(0.08870 kg/m)(3.80 m) = 0.337 kg.

EVALUATE: This mass is 337 g, which is a bit large for a wire 3.80 m long. It must be fairly thick.
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15.18. IDENTIFY: For transverse waves on a string, v = \/m . The general form of the equation for waves
traveling in the +x-direction is y(x,t) = Acos(kx — wt). For waves traveling in the —x-direction it is
y(x,t) = Acos(kx + wt). v=w/k.
SET Up: Comparison to the general equation gives 4 =8.50 mm, k=172 rad/m and @ = 4830 rad/s.
The string has mass 0.00128 kg and x =m/L = 0.000850 kg/m.
EXECUTE: (a) v= @ M =28.08 m/s. t= i = & =0.0534 s = 53.4 ms.

k172 rad/m v 28.08 m/s

(b) W = F = uv* = (0.000850 kg/m)(28.08 m/s)*> = 0.670 N.

2rrad _ 2z rad

ﬂ, = =
© k 172 rad/m

=0.0365 m. The number of wavelengths along the length of the string is

1.50 m

0.0365m
(d) For a wave traveling in the opposite direction, y(x, ¢) =(8.50 mm)cos([172 rad/m]x +[4830 rad/s]¢).

EVALUATE: We have assumed that the tension in the string is constant and equal to /. This is reasonable
since W > 0.0125 N, so the weight of the string has a negligible effect on the tension.

15.19. IDENTIFY: For transverse waves on a string, v=+/F/u. v= fA.
SET Up: The wire has ¢ =m/L =(0.0165 kg)/(0.750 m) =0.0220 kg/m.
EXECUTE: (a) v=fA=(875 Hz)(3.33 x1072 m) =29.1 m/s. The tension is

F = uv* =(0.0220 kg/m)(29.1 m/s)*> =18.6 N.

(b) v=29.1m/s

EVALUATE: If A is kept fixed, the wave speed and the frequency increase when the tension is increased.
15.20.  IDENTIFY: Apply 2F, =0 to determine the tension at different points of the rope. v= W .
=20.0 kg, m,,,.=2.00 kg and x4 =0.0250 kg/m.

EXECUTE: (a) The tension at the bottom of the rope is due to the weight of the load, and the speed is the
same 88.5m/s as found in Example 15.3.

(b) The tension at the middle of the rope is (21.0 kg)(9.80m/52) =205.8 N and the wave speed is 90.7 m/s.

(c) The tension at the top of the rope is (22.0 kg)(9.80 m/s2) =215.6 N and the speed is 92.9 m/s. (See

Challenge Problem (15.84) for the effects of varying tension on the time it takes to send signals.)
EVALUATE: The tension increases toward the top of the rope, so the wave speed increases from the
bottom of the rope to the top of the rope.

15.21. IDENTIFY: v=./F/u. v= fA. The general form for y(x,?) is given in Eq. (15.4), where T =1/f.

SET Up: From Example 15.3, m

samples rope

Eq. (15.10) says that the maximum transverse acceleration is a,,, = w* A= Qrf )2 A.
SETUP: £ =0.0500 kg/m

EXECUTE: (a) v=+/F/u =+/(5.00 N)/(0.0500) kg/m =10.0 m/s

(b) A=v/f =(10.0 m/s)/(40.0 Hz) = 0.250 m

(©) y(x,t)=A4 cos(kx—wt). k=27/1=8.00r rad/m; w=27xf =80.07 rad/s.
y(x,t)=(3.00 cm)cos[7(8.00 rad/m)x — (80.07 rad/s)¢]

= Aw* = AQx f)? =1890 m/s>.

(€) a, may is much larger than g, so it is a reasonable approximation to ignore gravity.

(d) v, =+Awsin(kx—wt) and a,, = —Aa)2cos(kx —O). 4y max

EVALUATE: y(x,t) in part (c) gives y(0,0) = 4, which does correspond to the oscillator having

maximum upward displacement at ¢ =0.
15.22. IDENTIFY: Apply Eq. (15.25).
SETUr: w=2xf. u=m/L.
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15.23.

15.24.

15.25.

15.26.

EXECUTE: (a) Pav=% UF & 4%

-3
P, = % J(%J(zs.o N)(27(120.0 Hz))*(1.6x107> m)? =0.223 W or 0.22 W to two figures.
. m

(b) B, is proportional to A%, so halving the amplitude quarters the average power, to 0.056 W.

EVALUATE: The average power is also proportional to the square of the frequency.
IDENTIFY: The average power carried by the wave depends on the mass density of the wire and the

tension in it, as well as on the square of both the frequency and amplitude of the wave (the target variable).
SErUp: B, =%1/yFa)2A2, V= E
u

1/2
. 1 . 2P,
EXECUTE: Solving B, =5 UF @* A% for A gives A =[ o ] . P,=0365W.

* UF

w=2rxf =2m(69.0 Hz) =433.5 rad/s. The tension is F =94.0 N and v:\/E S0
u

p=t o OON 4 eean107 ke/m.

V2 (492 m/s)>?
2(0.365 W)
(4335 rad/s)2\/(3.883><10_4 kg/m)(94.0 N)

EVALUATE: Vibrations of strings and wires normally have small amplitudes, which this wave does.
IDENTIFY: The average power (the target variable) is proportional to the square of the frequency of the
wave and therefore it is inversely proportional to the square of the wavelength.

A=

1/2
J =451x107° m=4.51 mm

av

SETUp: P, :% ,uFa)2A2 where @w=2xf. The wave speed is v= \/E
u

v 2 |F 1
EXECUTE: @=27f=2n—=—"—|— so P, =—+JuF
f 2 2 u av 2 H

ar

F . . .
pE [—]Az. This shows that P, is proportional
M

2 2
to % Therefore Py, A} =Py 143 and P, =Py A =(0.400 W) A _0.100 W
i T PTG, 2
EVALUATE: The wavelength is increased by a factor of 2, so the power is decreased by a factor of 22 = 4.
I 2
5 and S
4rzr I, x

IDENTIFY: For a point source, / =

SETUP: 1uW=10°W

2
EXECUTE: () 1y =1; | 2L = (30.0 m), /% -95 km
I, 1x10~° W/m

I,
b 2:3’
) 2%

2
with 7, =1.0 uW/m? and ry =2r,. I3 = IZ(QJ = 1,/4=0.25 gyW/m”>.
1) 7

3

(¢) P=1(47r*)=(10.0 W/m?)(47)(30.0 m)* =1.1x10° W

EVALUATE: These are approximate calculations, that assume the sound is emitted uniformly in all
directions and that ignore the effects of reflection, for example reflections from the ground.
IDENTIFY: Apply Eq. (15.26).

SETUp: [;=0.11 W/m?. n=75m. Set I,=1.0 W/m? and solve for 7.
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2
EXECUTE: r, =p L =(7.5 m) % =2.5m, so it is possible to move
1, 1.0 W/m

n—rn=75m-25m=5.0m closer to the source.

EVALUATE: [ increases as the distance » of the observer from the source decreases.
15.27. IDENTIFY: and SET UP: Apply Eq. (15.26) to relate / and r.

Power is related to intensity at a distance » by P =1 (47zr2). Energy is power times time.

EXECUTE: (a) 11r12 =12r22

L, = 1,(1i/r,)* = (0.026 W/m?*)(4.3 m/3.1 m)* = 0.050 W/m?

(b) P=4zr*1 =47(4.3 m)?(0.026 W/m?)=6.04 W

Energy = Pt = (6.04 W)(3600 s)=2.2x10* J

EVALUATE: We could have used »=3.1m and 7=0.050 W/m? in P=4zr>I and would have obtained
the same P. Intensity becomes less as r increases because the radiated power spreads over a sphere of

larger area.
15.28. IDENTIFY: The tension and mass per unit length of the rope determine the wave speed. Compare y(x,t)

given in the problem to the general form given in Eq. (15.8). v=w/k. The average power is given by
Eq. (15.25).

SET Up: Comparison with Eq. (15.8) gives 4=2.30 mm, k£ =6.98 rad/m and @ =742 rad/s.
EXECUTE: (a) 4=2.30 mm

_ @ _742rad/s _
() f= =TS =g e

_2r _ 2 _
(©) 4= k ~ 6.98rad/m 0.90 m
w

_w_ 742rad/s _
@) V= =598 rad/m ~ 00

(e) The wave is traveling in the —x-direction because the phase of y(x, ¢) has the form kx+ wr.

(f) The linear mass density is 4 = (3.38><10_3 kg)/(1.35 m) = 2.504x1073 kg/m, so the tension is
F = uv* =(2.504x107° kg/m)(106.3 m/s)> =28.3 N.

(®) Py =3uF &’ 4* = %\/(2.50x10_3 kg/m)(28.3 N) (742 rad/s)?(2.30x107> m)? =0.39 W
EVALUATE: In part (d) we could also calculate the wave speed as v = f'A and we would obtain the same

result.
15.29. IDENTIFY: The intensity obeys an inverse square law.
P . .
SET UpP: [=——, where P is the target variable.

b
azr?

EXECUTE: Solving for the power gives P = (47r>)I = 47(7.00x10'> m)?(15.4 W/m?) =9.48x10%” W.

EVALUATE: The intensity of the radiation is decreased enormously due to the great distance from the star.
15.30. IDENTIFY: The distance the wave shape travels in time 7 is v£. The wave pulse reflects at the end of the

string, at point O.

SET UP: The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end.

EXECUTE: (a) The wave form for the given times, respectively, is shown in Figure 15.30a.

(b) The wave form for the given times, respectively, is shown in Figure 15.30b.

EVALUATE: For the fixed end the result of the reflection is an inverted pulse traveling to the left and for

the free end the result is an upright pulse traveling to the left.
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Figure 15.30

15.31. IDENTIFY: The distance the wave shape travels in time ¢ is v£. The wave pulse reflects at the end of the
string, at point O.
SET UP: The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end.
EXECUTE: (a) The wave form for the given times, respectively, is shown in Figure 15.31a.
(b) The wave form for the given times, respectively, is shown in Figure 15.31b.
EVALUATE: For the fixed end the result of the reflection is an inverted pulse traveling to the left and for
the free end the result is an upright pulse traveling to the left.

= =t wld * - i e i
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(a)

l__ ;ﬁ—\ QT Djr ° -
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(b)

Figure 15.31

15.32. IDENTIFY: Apply the principle of superposition.
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse.
EXECUTE: The shape of the string at each specified time is shown in Figure 15.32.
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have
completely passed through each other.

RN, AT /\\ _ NN,

0.250 = 0.500 s 0.750 s 1.00 s 1.25

Figure 15.32

15.33.  IDENTIFY: Apply the principle of superposition.
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse.
EXECUTE: The shape of the string at each specified time is shown in Figure 15.33.
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have
completely passed through each other.
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15.34. IDENTIFY: Apply the principle of superposition.
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse.
EXECUTE: The shape of the string at each specified time is shown in Figure 15.34.
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have
completely passed through each other.

i

t=60s

t=70s

=805 /\/\

Figure 15.34

15.35. IDENTIFY: Apply the principle of superposition.
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse.
EXECUTE: The shape of the string at each specified time is shown in Figure 15.35.
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have
completely passed through each other.
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15.36. IDENTIFY: Apply Eqgs. (15.28) and (15.1). At an antinode, y(¢) = Agy sinwt. kand @ for the standing

wave have the same values as for the two traveling waves.

SETUP:  Agy =0.850 cm. The antinode to antinode distance is 4/2, so 4=30.0 cm. v,, =dy/ot.

EXECUTE: (a) The node to node distance is 4/2=15.0 cm.
(b) A is the same as for the standing wave, so 4=30.0 cm. 4= %Asw =0.425 cm.

_A_0300m

=—= =4.00 m/s.
T 0.0750s

= fA

9 . . .
©v,= a—); = Agw wsinkxcos @t. At an antinode sinkx =1, s0 v, = Agy WCOSWI. Vo = Ay ®.

27zrad 27 rad

T  0.0750s
(d) The distance from a node to an adjacent antinode is A4/4=7.50 cm.

=83.8 rad/s. v, ., = (0.850><10_2 m)(83.8 rad/s) =0.0712 m/s. v,

max

=0.

EVALUATE: The maximum transverse speed for a point at an antinode of the standing wave is twice the

maximum transverse speed for each traveling wave, since Agqy =24.
15.37. IDENTIFY and SET UP: Nodes occur where sinkx =0 and antinodes are where sinkx==1.
EXECUTE: Eq. (15.28): y = (Aqy sinkx)sin wt

(a) Atanode y=0 for all ¢. This requires that sinkx =0 and this occurs for kx =nz, n=0, 1, 2,...

x=nalhk=—2"%  _  —(133m)m,n=0,1,2,..
0.7507 rad/m
(b) At an antinode sinkx =%1 so y will have maximum amplitude. This occurs when kx = (n +1
n=0,1,2,..
x=(n+ D)z =(n+1)—F =133 m)(n+1),n=0,1,2,..
( 2) ( 2)0.7507z rad/m ( )( 2)

2

EVALUATE: A =27/k =2.66 m. Adjacent nodes are separated by A/2, adjacent antinodes are separated

by A/2, and the node to antinode distance is A/4.
15.38.  IDENTIFY: Evaluate 9°y/0x* and 0°y/0r* and see if Eq. (15.12) is satisfied for v = a/k.

SET Up: isinloc =kcoskx. icoskx =—ksinkx. isin @t = WCoSs wWi. icos Wt =—@sin Wt
ox ox ot ot

9%y 9%y

EXECUTE: (a) —
ox?

12
2

of Eq. (15.12), — k> =%, and vz%'
v

= —k2[ASw sin @t ]sin kx, 8_ = —a)z[ASW sin @¢]sinkx, so for y(x,t) to be a solution

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship v = A/k

applies.

EVALUATE: y(x,t)=(Aqw sinkx)sinax is a solution of the wave equation because it is a sum of

solutions to the wave equation.
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15.39.  IDENTIFY: Evaluate 9%y/0x?and 0°/9¢t> and show that Eq. (15.12) is satisfied.

J W, W J Ay . I,
SETUP: —(y; + =220 0 P ond 2+ ) ==L 4
o 01 +32) x| ox o O +x2) o
2 32 2 2 2 2
EXECUTE: a_;):a_zl +2 );2 and 2 ;}: ’ )2/1 +20 J;Z- The functions y; and y, are given as being
ox®  ox ox a” ot ot

solutions to the wave equation, so
2 2 2 2 2 2 2 2
1 1 1 1 .
=T BT )R ()| Sa e B = )5 o y=men s
ox ox ox v° ) ot v°) ot v ot ot ve ) ot
solution of Eq. (15.12).

EVALUATE: The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is
a linear operation.

. 2L
15.40. IDENTIFY: For a string fixed at both ends, 4, =— and f, = n(ij

n 2L
SET UP: For the fundamental, n=1. For the second overtone, n=3. For the fourth harmonic, n =4.
y _ (48.0m/s)

EXECUTE: (a) 4 =2L=3.00m. f = =16.0 Hz.

2L~ 2(1.50 m)
(b) 1, =4/3=1.00m. f,=3f =48.0 Hz.
() 4, =4/4=0.75m. f3=4f =64.0Hz.
EVALUATE: As n increases, A decreases and f'increases.

15.41.  IDENTIFY: Use Eq. (15.1) for v and Eq. (15.13) for the tension F. v, =dy/ot and a,, =dv,/ot.
(a) SET UP: The fundamental standing wave is sketched in Figure 15.41.

< L = 0800 m-> f=60.0 Hz
From the sketch,
Al2=L so
A=2L=1.60m

fundamental

Figure 15.41

EXECUTE: v= f1=(60.0 Hz)(1.60 m)=96.0 m/s

(b) The tension is related to the wave speed by Eq. (15.13):
v=4/Flu so F:,uvz.

4 =m/L=0.0400 kg/0.800 m =0.0500 kg/m

F = uv? =(0.0500 kg/m)(96.0 m/s)? = 461 N.

(¢) w=2rxf =377 rad/s and y(x,t)= Aqy sinkxsin ot

v, = WAgy sinkxcosawt; a, = —a)zASW sin kx sin wt

y
(V) )max = @Agw = (377 rad/s)(0.300 cm) =1.13 mv/s.

(@) max = @ Agyy = (377 1ad/s)*(0.300 cm) = 426 m/s”.

EVALUATE: The transverse velocity is different from the wave velocity. The wave velocity and tension are
similar in magnitude to the values in the examples in the text. Note that the transverse acceleration is quite
large.

15.42. IDENTIFY: The fundamental frequency depends on the wave speed, and that in turn depends on the tension.

F .
SETUP: v= |— where u=m/L. fi= % The nth harmonic has frequency f, = nf].
\ u
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EXECUTE: (a) v=|—— / BOONYOA0m) _ 37 g = V2 3T gy,
miL 3.00x107 kg 2L 2(0.400 m)

10,000 H .. .
(b) n * =24.4. The 24th harmonic is the highest that could be heard.

1
EVALUATE: In part (b) we use the fact that a standing wave on the wire produces a sound wave in air of
the same frequency.
15.43. IDENTIFY: Compare y(x,?) given in the problem to Eq. (15.28). From the frequency and wavelength for

the third harmonic find these values for the eighth harmonic.
(a) SET UP: The third harmonic standing wave pattern is sketched in Figure 15.43.

Figure 15.43

EXECUTE: (b) Eq. (15.28) gives the general equation for a standing wave on a string:
y(x, t) = (Agwy sinkx)sin wt
Agw =24, so A= Agy/2=(5.60 cm)/2=2.80 cm
(c) The sketch in part (a) shows that L =3(A/2). k=2x/A, A=2x/k
Comparison of y(x,t) given in the problem to Eq. (15.28) gives k£ =0.0340 rad/cm. So,
A =27/(0.0340 rad/cm) =184.8 cm
L=3(4/2)=277 cm
(d) 4=185 cm, from part (c)
w=50.0rad/s so f=w/27r=7.96 Hz
period T =1/f=0.126 s
v=fA1=1470 cm/s
(€) v, = dy/dt = wAgyy sinkxcos vt
Yy, max = @Ay = (50.0 rad/s)(5.60 cm) =280 cm/s
® f3=7.96Hz=3f], so f;=2.65Hz is the fundamental
fs=8f1=212Hz;, ax=2xrf;=133rad/s
=v/f =(1470 cm/s)/(21.2 Hz) =69.3 cm and k =27/4=0.0906 rad/cm
y(x,1)=(5.60 cm)sin([0.0906 rad/cm]x)sin([133 rad/s]¢)

EVALUATE: The wavelength and frequency of the standing wave equals the wavelength and frequency of
the two traveling waves that combine to form the standing wave. In the 8th harmonic the frequency and
wave number are larger than in the 3rd harmonic.

15.44. IDENTIFY: Compare the y(x,?) specified in the problem to the general form of Eq. (15.28).

SET UpP: The comparison gives Aqy =4.44 mm, k =32.5 rad/m and =754 rad/s.
EXECUTE: (a) A= iASW = i(4.44 mm) = 2.22 mm.

_ 2 2r
(b) A=4L =335 radim =0.193 m.
_754rad/s _
(©) f= i =120 Hz.
__754rad/s _
@ v= k ~32.5rad/m =23.2m/s.
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(e) If the wave traveling in the +x-direction is written as y;(x, t) = A cos(kx — wt), then the wave traveling in
the —x-direction is y,(x, 1) =—Acos(kx + ax), where 4=2.22 mm from part (a), k =32.5 rad/m and
w="754rads.
(f) The harmonic cannot be determined because the length of the string is not specified.
EVALUATE: The two traveling waves that produce the standing wave are identical except for their
direction of propagation.
15.45.  (a) IDENTIFY and SET UP: Use the angular frequency and wave number for the traveling waves in
Eq. (15.28) for the standing wave.
EXECUTE: The traveling wave is y(x, ) =(2.30 mm)cos([6.98 rad/m]x) +[742 rad/s]t)
A=230mm so Aqy =4.60 mm; k=698 rad/m and @w=742 rad/s
The general equation for a standing wave is y(x, t) = (Aqw sinkx)sin wt, so
y(x,t)=(4.60 mm)sin([6.98 rad/m]x)sin([ 742 rad/s]¢)
(b) IDENTIFY and SET UP: Compare the wavelength to the length of the rope in order to identify the harmonic.
EXECUTE: L=1.35m (from Exercise 15.28)
A=2x/k=0.900 m
L =3(A/2), so this is the 3rd harmonic
(c) For this 3rd harmonic, f'=@/27x =118 Hz
=3/ so fi=(18 Hz)/3=39.3 Hz
EVALUATE: The wavelength and frequency of the standing wave equals the wavelength and frequency of
the two traveling waves that combine to form the standing wave. The nth harmonic has » node-to-node
segments and the node-to-node distance is 4/2, so the relation between L and A for the nth harmonic is
L=n(A/2).
. 2L .
15.46. IDENTIFY: v=./F/u. v= fA. The standing waves have wavelengths 4, =— and frequencies f, =nf,.
n
The standing wave on the string and the sound wave it produces have the same frequency.
SET UP: For the fundamental »n =1and for the second overtone »=3. The string has
L1=m/L=(8.75x107 kg)/(0.750 m)=1.17x107> kg/m.
EXECUTE: (a) A=2L/3=2(0.750 m)/3=0.500 m. The sound wave has frequency
f= LA 344 m/s =449.7 Hz. For waves on the string,
A 0.765m
v=fA=(449.7 Hz)(0.500 m) = 224.8 m/s. The tension in the string is
F = v* =(1.17x107% kg/m)(224.8 m/s)> =591 N.
(b) f, = f3/3=(449.7 Hz)/3 =150 Hz.
EVALUATE: The waves on the string have a much longer wavelength than the sound waves in the air
because the speed of the waves on the string is much greater than the speed of sound in air.
15.47.  IDENTIFY and SET UP: Use the information given about the A, note to find the wave speed that depends

on the linear mass density of the string and the tension. The wave speed isn’t affected by the placement of
the fingers on the bridge. Then find the wavelength for the D5 note and relate this to the length of the

vibrating portion of the string.
EXECUTE: (a) f =440 Hz when a length L =0.600 m vibrates; use this information to calculate the

speed v of waves on the string. For the fundamental A/2=L so A=2L=2(0.600 m)=1.20 m. Then

v= fA=(440 Hz)(1.20 m) =528 m/s. Now find the length L =x of the string that makes f =587 Hz.
v 528 m/s
T f 587 Hz

L=1/2=0.450 m, so x=0.450 m=45.0 cm.

=0.900 m
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(b) No retuning means same wave speed as in part (a). Find the length of vibrating string needed to
produce f =392 Hz.

SRAEC L LN P
f 392Hz

L=1/2=0.675 m; string is shorter than this. No, not possible.
EVALUATE: Shortening the length of this vibrating string increases the frequency of the fundamental.
1548.  IDENTIFY: y(x,!)=(dgy sinkv)sinr. v, =0y/ot. a, =0>y/or’.

SETUP: v, = (Asw SINkX)@. a,,,, = (Agy sinkx)a’.

FN PN

EXECUTE: (a) (i)x= 3 is a node, and there is no motion. (ii) x =— is an antinode, and

Vinax = AQT ) =27 fA, = QIS ) Vax = 4772 A. (i) cos = —L and this factor multiplies the

=

results of (if), 50 V. =N27 4, an, =227 %A,
(b) The amplitude is 24sinkx, or (i) 0, (ii) 24, (iii) 24/7/2.

(¢) The time between the extremes of the motion is the same for any point on the string (although the
period of the zero motion at a node might be considered indeterminate) and is 1/2 f".

EVALUATE: Any point in a standing wave moves in SHM. All points move with the same frequency but
have different amplitude.

15.49. IDENTIFY: For the fundamental, f = % v=4F/u. A standing wave on a string with frequency 1’

produces a sound wave that also has frequency f.

SETUP: f;=245Hz. L=0.635m.

EXECUTE: (a) v=2fL=2(245 Hz)(0.635 m) =311 m/s.

(b) The frequency of the fundamental mode is proportional to the speed and hence to the square root of the
tension; (245 Hz)\/ﬁ =246 Hz.

(¢) The frequency will be the same, 245 Hz. The wavelength will be

Aair = Vair!f = (344 m/s)/(245 Hz) =1.40 m, which is larger than the wavelength of standing wave on the

string by a factor of the ratio of the speeds.
EVALUATE: Increasing the tension increases the wave speed and this in turn increases the frequencies of
the standing waves. The wavelength of each normal mode depends only on the length of the string and
doesn’t change when the tension changes.

15.50. IDENTIFY: The ends of the stick are free, so they must be displacement antinodes. The first harmonic has
one node, at the center of the stick, and each successive harmonic adds one node.
SET UP: The node to node and antinode to antinode distance is A/2.
EXECUTE: The standing wave patterns for the first three harmonics are shown in Figure 15.50.

1st harmonic: L = %/11 — A4 =2L=4.0 m. 2nd harmonic: L=14, >4, =L=2.0m.

3rd harmonic: L =%/13 - A =2TL=1.33 m.

EVALUATE: The higher the harmonic the shorter the wavelength.

3rd harmonic

Figure 15.50
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15.51.  IDENTIFY and SET UP: Calculate v, @, and k from Egs. (15.1), (15.5) and (15.6). Then apply Eq. (15.7)
to obtain y(x,?).
A=250x10" m, 1=1.80 m, v=36.0 m/s
EXECUTE: (a) v=fA so f=v/A=(36.0 m/s)/1.80 m=20.0 Hz
w=2rf=2x(20.0 Hz) =126 rad/s
k=2m/A=2rx rad/1.80 m =3.49 rad/m
(b) For a wave traveling to the right, y(x,)= Acos(kx — @t). This equation gives that the x =0 end of the

string has maximum upward displacement at ¢ =0.

Put in the numbers: y(x,?)= (2.50><10_3 m)cos((3.49 rad/m)x — (126 rad/s)t.

(¢) The left-hand end is located at x =0. Put this value into the equation of part (b):

y(0,¢) =+(2.50% 1073 m)cos((126 rad/s)z).

(d) Put x=1.35m into the equation of part (b):

y(1.35m, )= (2.50x107> m)cos((3.49 rad/m)(1.35 m) — (126 rad/s)r).

y(1.35m, 1) =(2.50 % 1073 m)cos(4.71 rad — (126 rad/s)t)

4.71 rad =37/2 and cos(@)=cos(-6), so y(1.35 m,t)= (2.50><10_3 m)cos((126 rad/s)t —37z/2 rad)
(e) y=Acos(kx—wt) (part (b))

The transverse velocity is given by v, = a_y = Aicos(kx —ot) =+Awsin(kx — wr).

ot ot
The maximum v, is Aw= (2.50><1073 m)(126 rad/s) =0.315 m/s.

®) y(x,1)=(2.50x 10~ m)cos((3.49 rad/m)x — (126 rad/s)t)

t=0.0625s and x=1.35m gives

y=(2.50x107> m)cos((3.49 rad/m)(1.35 m) — (126 rad/s)(0.0625 s)) =—2.50x10™> m.

v, = +Awsin(kx — wt) =+(0.315 m/s)sin((3.49 rad/m)x — (126 rad/s)¢)

t=0.0625s and x=1.35m gives

v, =(0.315 m/s)sin((3.49 rad/m)(1.35 m) - (126 rad/s)(0.0625 s)) =0.0

EVALUATE: The results of part () illustrate that v, =0 when y=2*4, as we saw from SHM in

Chapter 14.
15.52. IDENTIFY: Compare y(x,t) given in the problem to the general form given in Eq. (15.8).

SET UP: The comparison gives 4 =0.750 cm, k=0.4007 rad/cm and @ = 2507z rad/s.
EXECUTE: (a) 4=0.750cm, A= =500cm, f=125Hz, T =lf,= 0.00800 s and
v=Af=6.25m/s.

(b) The sketches of the shape of the rope at each time are given in Figure 15.52.
(c¢) To stay with a wavefront as ¢ increases, x decreases and so the wave is moving in the —x-direction.

(d) From Eq. (15.13), the tension is F = v* =(0.50 kg/m)(6.25 m/s)*> =19.5 N.
() B, =1JuFao’4* =542 W.

EVALUATE: The argument of the cosine is (kx + @t) for a wave traveling in the —x-direction, and that is

2
0.400 rad/cm

the case here.
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15.53.

15.54.

r=0s

x(cm)

1= 000055
¥ (cm)

0.75 -
05

0.25 /
0 L x (cm)

-025
D3
-0.75F

t=0.0010s
¥ (cm)

0.75

05
025 /
0 : x {cm)

0

-0.75

Figure 15.52

IDENTIFY: The speed in each segment is v =/ F/u. The time to travel through a segment is ¢ = L/v.

SET Up: The travel times for each segment are #, = Jﬂl t = ,f , and 3 = ,f f 117 .
: i i ~ — |t /ﬂ 1y [
EXECUTE: (a) Adding the travel times gives f,, =L a +2L 7 +5L 7 =2 L Ik

(b) No. The speed in a segment depends only on F and x for that segment.

EVALUATE: The wave speed is greater and its travel time smaller when the mass per unit length of the
segment decreases.

IDENTIFY: Apply 27, =0 to find the tension in each wire. Use v =/F/u to calculate the wave speed for
each wire and then ¢ = L/v is the time for each pulse to reach the ceiling, where L =1.25 m.

SET UP: The wires have u= mn_ 0"3620 N
L (9.80 m/s?)(1.25 m)

beam is given in Figure 15.54. Take the axis to be at the end of the beam where wire 4 is attached.

=0.02939 kg/m. The free-body diagram for the
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EXECUTE: X7,=0gives TgL=w(L/3)and T =w/3=583 N. T,+Tz=1750 N, so T, =1167 N.

yy= Lo | MOTN g9 e =125M 600627 s = 6.27 ms.
i 0.02939 kg/m 199 m/s

vp= |—BN s, 1y =22 000888 s = 8.88 ms.
0.02939 kg/m 141 m/s

At=tp—t,=888ms—6.27 ms=2.6 ms.

EVALUATE: The wave pulse travels faster in wire 4, since that wire has the greater tension, so the pulse in
wire A4 arrives first.

Ty

A 6‘ Ty

axis—>

w
Figure 15.54

15.55.  IDENTIFY and SET UP: The transverse speed of a point of the rope is v, = dy/ot where y(x,t) is given by

Eq. (15.7).
EXECUTE: (a) y(x,t)= Acos(kx—wt)

v, = 0y/dt =+ Awsin(kx — ot)
V. max = A0 =274

_Y _ /L _[1) |£L
f—/iandv— (M/L)’Sof (/J i

2rwA)\ |FL
o =\ N g

(b) To double v

), max inCrease £ by a factor of 4.

EVALUATE: Increasing the tension increases the wave speed v which in turn increases the oscillation
frequency. With the amplitude held fixed, increasing the number of oscillations per second increases the
transverse velocity.

15.56. IDENTIFY: The maximum vertical acceleration must be at least g.
SETUP: a,, = w0’ A
EXECUTE: g= a)ZAmin and thus 4 ;, = g/ @*. Using =27xf =27v/A and v=[F/u, this becomes

_ghu
" 42

EVALUATE: When the amplitude of the motion increases, the maximum acceleration of a point on the
rope increases.

15.57. IDENTIFY and SET UP: Use Eq. (15.1) and w=27zf to replace v by @ in Eq. (15.13). Compare this
equation to @=~/k"/m from Chapter 14 to deduce %’.
EXECUTE: (a) w=2xf, f=v/A, and v=./F/u. These equations combine to give

w=27rf=21(vA)=Cr/A)Flu.
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But also @=-/k"/m. Equating these expressions for @ gives k" =m(27/4)* (F/u).
But m=uAx so k'=Ax(27/A)*F
(b) EVALUATE: The “force constant” &’ is independent of the amplitude 4 and mass per unit length £,

just as is the case for a simple harmonic oscillator. The force constant is proportional to the tension in the
string F and inversely proportional to the wavelength A. The tension supplies the restoring force and the

1/A% factor represents the dependence of the restoring force on the curvature of the string.
15.58. IDENTIFY: The frequencies at which a string vibrates depend on its tension, mass density and length.

T TL . . . .. L
SETUP: f = ﬁ, where v=_[— = /— T is the tension in the string, L is its length and m is its mass.
\/ U m

% 1 /TL 1 / T
EXECUTE: (a =—=— |— =—,[—. Solving for T gives
@ A 2L 2L \N'm 2\Lm 8 £

T =(2;)* Lm = 4(262 Hz)*(0.350 m)(8.00x10>kg) = 769 N.

(b) m= r 5= 769N 5 =253¢.
L(2f)” (0.350 m)(4)(466 Hz)

-3

(¢) For S;, u =M=O.O229 kg/m. T=769N and v=T/u =183 m/s. f}= > gives

0.350 m 2L
Vv I8 em v =35.0 em—33.0 em = 2.00 cm.
2f, 2(277 Hz)

-3

(d) For S,, u _2:33x10 ke _ 7.23x107 kg/m. T=769 N and v=+/T/u =326 m/s. L=0.330m

0.350 m
and f| = 4 —ﬂ—494 Hz.

2L  2(0.330 m)
EVALUATE: If the tension is the same in the strings, the mass densities must be different to produce
sounds of different pitch.
15.59. IDENTIFY: The frequency of the fundamental (the target variable) depends on the tension in the wire. The
bar is in rotational equilibrium so the torques on it must balance.

SET Up: v=\/E and f=l. 27, =0.
y7, A

EXECUTE: A=2L=0.660 m. The tension F in the wire is found by applying the rotational equilibrium
methods of Chapter 11. Let / be the length of the bar. Then X7, =0 with the axis at the hinge gives

o 2 o
Flcos30° = Limgsin300, p=gtan30"_ (450 ke)O.80 m/sT)tan30% ;5
2 2 2
v= £ 127.3 N —2137ms, f=t=2BTS
2\ (0.0920 kg/0.330 m) A 0.660 m

EVALUATE: This is an audible frequency for humans.

15.60. IDENTIFY: The mass of the planet (the target variable) determines g at its surface, which in turn
determines the weight of the lead object hanging from the string. The weight is the tension in the string,
which determines the speed of a wave pulse on that string.

m . F
SET UP: At the surface of the planet g = GR—;’. The pulse speed is v=_|—.
\ u
P

EXECUTE: On carth, v=—0 T _ 1 0256x10> m/s. 1= 20280 K& _ 5 0051073 kg/m?. F = Mg, so
0.0390 s 4.00 m
Mg C
v=_|—= and the mass of the lead weight is
U
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-3
M= [ﬁjvz [MJ(I.OZ%XIOZ m/s)> =7.513 kg. On the planet,

g 9.8 m/s>
-3
_A00m _ o6 67 mis. Therefore g = (ﬁjvz =| Z00x107 kg/m |\ 06 67 mis) = 4.141 ms?.
0.0600 s M 7513 ke

CgRY (4141 m/s?)(7.20x107 m)?

m
=G—L and m, =
R PG 6.6742x1071 N-m?/kg?

EVALUATE: This mass is about 50 times that of Earth, but its radius is about 10 times that of Earth, so the
result is reasonable.

15.61. IDENTIFY: The wavelengths of standing waves depend on the length of the string (the target variable),
which in turn determine the frequencies of the waves.

SETUP: f, =nf; where fj=—

=3.22x10% kg.

EXECUTE: f, =nf; and f,,; =(n+1)f. We know the wavelengths of two adjacent modes, so

v _ 384ms

2 f 2(105 Hz)

EVALUATE: The observed frequencies are both audible which is reasonable for a string that is about a half
meter long.

S1= S — f, =630 Hz =525 Hz =105 Hz. Solving f; =— forL gives L=

15.62. IDENTIFY: Apply X7, =0 to one post and calculate the tension in the wire. v=./F/u for waves on the
wire. v= fA. The standing wave on the wire and the sound it produces have the same frequency. For

. . 2L
standing waves on the wire, 4, =—.

n
SET UP: For the 5th overtone, n = 6. The wire has ¢ =m/L =(0.732 kg)/(5.00 m) =0.146 kg/m. The

free-body diagram for one of the posts is given in Figure 15.62. Forces at the pivot aren’t shown. We take
the rotation axis to be at the pivot, so forces at the pivot produce no torque.

L 2
EXECUTE: X7, =0 gives w —cosS7 0° |-T(Lsin57.0°)=0. T = ld = BN __ =76.3 N. For
2tan57.0°  2tan57.0°

waves on the wire, v= _T63N =22.9 m/s. For the 5th overtone standing wave on the wire,
0.146 kg/m

_2L_260m 1.67m. f= v_229ms_ 13.7 Hz. The sound waves have frequency 13.7 Hz and
6 6 A 1.67m

wavelength 4= 344 m/s
13.7

=25.0m

z
EVALUATE: The frequency of the sound wave is just below the lower limit of audible frequencies. The
wavelength of the standing wave on the wire is much less than the wavelength of the sound waves, because
the speed of the waves on the wire is much less than the speed of sound in air.

axis

Figure 15.62
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15.63. IDENTIFY: The tension in the wires along with their lengths determine the fundamental frequency in each
one (the target variables). These frequencies are different because the wires have different linear mass
densities. The bar is in equilibrium, so the forces and torques on it balance.

F .\
SETUp: T,+T.=w, X7,=0, v=_|—, fi=v/2Land u= %, where m=pV = p7Z'V2L. The densities of
\ u

copper and aluminum are given in a table in the text.
EXECUTE: Using the subscript “a” for aluminum and “c” for copper, we have 7, + T, = w=1536 N.

X7, =0, with the axis at left-hand end of bar, gives 7,(1.40 m)=w(0.90 m), so 7, =344.6 N.

2
T, =536 N-3446N=1914N. fi=—r, u="_PPL_ .2

Y A A
For the copper wire: F =344.6 N and x=(8.90x10° kg/m*)7(0.280x107> m)? =2.19x10~> kg/m, so

\f 3446N T A S _ 3967 mfs _ oo
2.19x107 kg/m 2L 2(0.600 m)

For the aluminum wire: F=191.4 N and u=(2.70x10* kg/m*)7(0.280x10™> m)*> =6.65x10™* kg/m,

so v—\/7 o19.4 N ——— =536.5 m/s, which gives f] = 365 mfs. =447 Hz.
6.65x10™* kg/m 2(0 600 m)

EVALUATE: The wires have different fundamental frequencies because they have different tensions and
different linear mass densities.
15.64. IDENTIFY: The time it takes the wave to travel a given distance is determined by the wave speed v.
A point on the string travels a distance 44 in time 7.
SETUP: v=fA T=1/f.
EXECUTE: (a) The wave travels a horizontal distance d in a time
P — L BT
v Af (0.600 m)(70.0 Hz)
(b) A point on the string will travel a vertical distance of 44 each cycle. Although the transverse velocity
v, (x,7) is not constant, a distance of £ =8.00 m corresponds to a whole number of cycles,

n="h/(44)=(8.00 m)/[4(5.00% 1073 m)] =400, so the amount of time
ist =nT =n/f =(400)/(70.0 Hz) =5.71 s.
EVALUATE: (c) The time in part (a) is independent of amplitude but the time in part (b) depends on the
amplitude of the wave. For (b), the time is halved if the amplitude is doubled.
15.65. IDENTIFY: Follow the procedure specified in part (b).
SETUpP: If u=x—vt,then a—u=—v and a—u=l.
ot ox
EXECUTE: (a) As time goes on, someone moving with the wave would need to move in such a way that
the wave appears to have the same shape. If this motion can be described by x =v¢+b, with b a constant,

then y(x,¢)= f(b), and the waveform is the same to such an observer.

2
(b) 3 ;} 0011 ]; and a— v 2 J , 80 y(x,1)= f(x—wvt) is a solution to the wave equation with wave
t
speed v.

(¢) This is of the form y(x,t)= f(u), withu=x—vt and f(u)= De_Bz(x_C’/B)z. The result of part (b)
may be used to determine the speed v=C/B.

EVALUATE: The wave in part (c) moves in the +x-direction. The speed of the wave is independent of the
constant D.
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15.66. IDENTIFY: The wavelengths of the standing waves on the wire are given by 4, = 2—L When the ball is
n

. Fi
changed the wavelength changes because the length of the wire changes; Al = A_l}(i'

SET UP: For the third harmonic, n=3. For copper, ¥ =11x 10'° Pa. The wire has cross-sectional area
A=mr* =7(0.512x107 m)> =8.24x107" m>.

2(1.20 m)

EXECUTE: (a) A; = =0.800 m

(b) The increase in length when the 100.0 N ball is replaced by the 500.0 N ball is given by Al = %,

where AF =400.0 N is the increase in the force applied to the end of the wire.
(400.0 N)(1.20 m)
(8.24x1077 m?)(11x10' Pa)

EVALUATE: The change in tension changes the wave speed and that in turn changes the frequency of the
standing wave, but the problem asks only about the wavelength.
15.67. IDENTIFY and SET UP: Use Eq. (15.13) to replace u, and then Eq. (15.6) to replace v.

EXECUTE: (a) Eq. (15.25): B, =%«/,uFa)2A2
v=\[Flu says \Ju=~F/v so B, = (NFWNF&’4* =1Fe’ 4°Iv

=5.30x10"> m. The change in wavelength is A4 = %Al =3.5 mm.

w=2xf so wv=2nflv=2n/A=k and B, = %Fka)Az, as was to be shown.
(b) IDENTIFY: For the @ dependence, use Eq. (15.25) since it involves just @, notk: P, = %J UF w* 4%

SETUP: F,,, u, A all constant so \/Fa)z is constant, and \/Fla)lz = \/szzz
EXECUTE: @, = 0y (F/Fy)"* = a(F/4R)"* =0y (4)* =y V2

o must be changed by a factor of 12 (decreased)

IDENTIFY: For the £ dependence, use the equation derived in part (a), B, = %Fka)/ﬂ.

SET Up: If P, and A4 are constant then Fk® must be constant, and Fka = F>k,0,.

EXECUTE:  ky =k | 10 || 2 | =g [ L | @ =k1£=kl\/z=kl/\/§
B\ o, 4F \ ay/A2 4 16

k must be changed by a factor of 1/4/8 (decreased).
EVALUATE: Power is the transverse force times the transverse velocity. To keep F,, constant the
transverse velocity must be decreased when F is increased, and this is done by decreasing w.
15.68. IDENTIFY: The phase angle determines the value of y for x =0, =0 but does not affect the shape of the
y(x, t) versus x or ¢ graph.
dcos(kx —wt +¢)
ot N
EXECUTE: (a) The graphs for each ¢ are sketched in Figure 15.68.

SET UP: —wsin(kx — @t + @).

(b) % =—wAsin(kx — wt + @)

(¢) No. ¢p=7x/4 or ¢ =37/4 would both give AN2. 1f the particle is known to be moving downward, the
result of part (b) shows that cos ¢ <0, and so ¢ =37/4.

(d) To identify ¢ uniquely, the quadrant in which ¢ lies must be known. In physical terms, the signs of both the
position and velocity, and the magnitude of either, are necessary to determine ¢ (within additive multiples of 27).
EVALUATE: The phase ¢ =0 correspondsto y=A4at x=0, ¢t=0.
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Figure 15.68

15.69. IDENTIFY and SET UP: The average power is given by Eq. (15.25). Rewrite this expression in terms of v
and A in place of F and .

EXECUTE: (a) B, =%,/uFa)2A2

v=4/F/u so \/F=V\/z

w=2rxf=2x(IA)

. . . _ 2.3 42,92,
Using these two expressions to replace JF and @ gives B, =2un-v'A°/A%;
1=(6.00x107> kg)/(8.00 m)

2P 12
A= I =7.07 cm

4ﬂ2v3,u
(b) EVALUATE: P, ~ v? so doubling v increases P, by a factor of 8.
P, =8(50.0 W)=400.0 W
15.70. IDENTIFY: The wave moves in the +x direction with speed v, so to obtain y(x,¢) replace x with x — vt in

the expression for y(x,0).
SET UP: P(x,¢) is given by Eq. (15.21).
EXECUTE: (a) The wave pulse is sketched in Figure 15.70.
(b)

0 for (x—vt)<-L

ML+x—-vt)/L for —L<(x—vt)<0

ML—-x+vt)/L for O<(x—vt)<L

0 for (x—vt)>L
(¢) From Eq. (15.21):

y(x,t)=

— F(0)(0)=0 for (x—vr)<—L
Pty =—F () Y0 _ |~ FOWLY=hviL) = Fy(hL)?>  for —L<(x—vt)<0
ox ot — F(=h/LY(hvIL)= Fw(h/L)*> for 0<(x—vt)<L
- F(0)0)=0 for (x—vt)>L

Thus the instantaneous power is zero except for —L < (x —vt) < L, where it has the constant value F v(hIL)?.
EVALUATE: For this pulse the transverse velocity v, is constant in magnitude and has opposite sign on

either side of the peak of the pulse.
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15.71.

15.72.

h

Figure 15.70

IDENTIFY: Draw the graphs specified in part (a).
SETUP: When y(x,f) is a maximum, the slope dy/dx is zero. The slope has maximum magnitude when

y(x,8)=0.

EXECUTE: (a) The graph is sketched in Figure 15.71a.

(b) The power is a maximum where the displacement is zero, and the power is a minimum of zero when
the magnitude of the displacement is a maximum.

(c) The energy flow is always in the same direction.

(d) In this case, g_y = —kAsin(kx + wt) and Eq. (15.22) becomes P(x, 1) = —Fk wA>sin? (kx + ot). The power
X

is now negative (energy flows in the —x-direction ), but the qualitative relations of part (b) are unchanged.
The graph is sketched in Figure 15.71b.

EVALUATE: cos6 and sin@are 180° out of phase, so for fixed ¢, maximum y corresponds to zero P and
y =0 corresponds to maximum P.

¥
P
X X

P

(a) (b)
Figure 15.71
IDENTIFY: The time between positions 1 and 5 is equal to 7/2. v= fA. The velocity of points on the

string is given by Eq. (15.9).

. . L 0
SET UP: Four flashes occur from position 1 to position 5, so the elapsed time is 4( 5600;

j= 0.048 s. The

figure in the problem shows that 4 =L =0.500 m. At point P the amplitude of the standing wave is 1.5 cm.
EXECUTE: (a) 7/2=0.048 s and 7=0.096s. f=1/T=10.4 Hz. 4=0.500 m.

(b) The fundamental standing wave has nodes at each end and no nodes in between. This standing wave
has one additional node. This is the 1st overtone and 2nd harmonic.

(¢) v=f1=(10.4 Hz)(0.500 m) =5.20 m/s.

(d) In position 1, point P is at its maximum displacement and its speed is zero. In position 3, point P is passing
through its equilibrium position and its speed is v, = WA =27 fA=27(10.4 Hz)(0.015 m) = 0.980 m/s.

(e) v=\/z= L and m:ﬂ:—(l'00 N)(0.500 m) =185 g.
u \'m v? (5.20 m/s)?

EVALUATE: The standing wave is produced by traveling waves moving in opposite directions. Each point
on the string moves in SHM, and the amplitude of this motion varies with position along the string.
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15.73.  IDENTIFY and SET UP: There is a node at the post and there must be a node at the clothespin. There could
be additional nodes in between. The distance between adjacent nodes is A/2, so the distance between any

two nodes is n(A4/2) for n=1, 2, 3,... This must equal 45.0 cm, since there are nodes at the post and
clothespin. Use this in Eq. (15.1) to get an expression for the possible frequencies f-
EXECUTE: 45.0 cm=n(A/2), A=v/f, so f=n[v/(90.0 cm)]=(0.800 Hz)n, n=1, 2, 3,...
EVALUATE: Higher frequencies have smaller wavelengths, so more node-to-node segments fit between
the post and clothespin.

15.74.  IDENTIFY: The displacement of the string at any point is y(x,t) = (A4gy sinkx)sin @¢. For the fundamental

mode A=2L, so at the midpoint of the string sinkx =sin(2z/4)(L/2) =1, and y = Aqy sinwt. The

transverse velocity is v, =dy/of and the transverse acceleration is a,, = dv,/ot.

y

. L . dy . .
SET UP: Taking derivatives gives v, = e @Agy cos wt, with maximum value v, .,

= WAgyy, and
_9
Yoo

EXECUTE: @=4, 1q/V) max

/o= (3.80 m/s)/(2.21x10° rad/s) =1.72x107> m.

a = —a)zASW sin @¢, with maximum value 4y max = a)zASW.

=(8.40%x10° m/s?)/(3.80 m/s) = 2.21x10° rad/s, and then

ASW = Vy, max

(b) v=Af =2L)(@/27) = Loz = (0.386 m)(2.21x10° rad/s)/ 7 = 272 m/s.
EVALUATE: The maximum transverse velocity and acceleration will have different (smaller) values at
other points on the string.
15.75. IDENTIFY: Carry out the derivation as done in the text for Eq. (15.28). The transverse velocity is
v, =0y/dt and the transverse acceleration is a, =dv,/ot.
(a) SET Up: For reflection from a free end of a string the reflected wave is not inverted, so
y(x, t)=y(x, )+ y,(x, t), where
y1(x, t) = Acos(kx + wt) (traveling to the left)
Vo(x,t) = Acos(kx — wt) (traveling to the right)
Thus y(x, t) = A[cos(kx + wt) + cos(kx — wt)].
EXECUTE: Apply the trig identity cos(a +b)=cosacosb Fsinasinb with a =kx and b= wr:
cos(kx + wt) = coskxcoswt —sin kxsinwt and
cos(kx — wt) = cos kxcos wt + sin kx sin wt.
Then y(x,t)=(2Acoskx)cosax (the other two terms cancel)
(b) For x=0, coskx=1 and y(x,t)=2Acoswt. The amplitude of the simple harmonic motion at x =0 is
24, which is the maximum for this standing wave, so x =0 is an antinode.
(©) Ymax =2A from part (b).

v, = B_y = 3[(2A coskx)coswt]=2A4 coskxM =-2Awcos kxsin wt.
ot ot ot
At x=0, v, =-24wsinwr and (v,)p,, =240
2 ov 1 t
a, = 8_;/ =—2 = _2A4wcoskx Osin @ =2 Aw* coskxcos ot
ot ot
At x=0, a,=-24w"coswt and (a,)p,, =240,

EVALUATE: The expressions for (v,)y, and (a,)p,y are the same as at the antinodes for the standing

wave of a string fixed at both ends.
15.76. IDENTIFY: The standing wave is given by Eq. (15.28).

. . . _ _ _ 2
SETUP: Atan antinode, sinkx=1. v, ., =®A. a, ., =0 A

EXECUTE: (a) A=v/f =(192.0m/s)/(240.0 Hz) =0.800 m, and the wave amplitude is Agy =0.400 cm.

The amplitude of the motion at the given points is
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(1) (0.400 cm)sin(z) =0 (anode) (ii) (0.400 cm) sin(z/2) =0.400 cm (an antinode)
(iii) (0.400 cm) sin(7z/4) =0.283 cm
(b) The time is half of the period, or 1/(2f) =2.08x 1073s.
(¢) In each case, the maximum velocity is the amplitude multiplied by @ =27z f and the maximum
acceleration is the amplitude multiplied by w* = 4r? f 2,
(i) 0, 0; (ii) 6.03 m/s, 9.10x10° m/s?; (iii) 4.27 m/s, 6.43x10° m/s>.
EVALUATE: The amplitude, maximum transverse velocity, and maximum transverse acceleration vary
along the length of the string. But the period of the simple harmonic motion of particles of the string is the
same at all points on the string.
15.77. IDENTIFY: The standing wave frequencies are given by f, = n(%) v=/F/u. Use the density of steel
to calculate g for the wire.
SET UP: For steel, p = 7.8x10° kg/m3. For the first overtone standing wave, n =2.
EXECUTE: v= % =(0.550 m)(311 Hz) =171 m/s. The volume of the wire is V' = (JZ'FZ)L. m=pV so
_m_pV_ 5 3 3 32 -3 L
U= AR prr® =(7.8%x10° kg/m”)z(0.57x107° m)” =7.96x107" kg/m. The tension is
F=m?” =(7.96x107 kg/m)(171 m/s)> =233 N.
EVALUATE: The tension is not large enough to cause much change in length of the wire.
15.78.  IDENTIFY: The mass and breaking stress determine the length and radius of the string. f; = ﬁ, withv = \/E .
Y7,
SET UP: The tensile stress is F/zr.
EXECUTE: (a) The breaking stress is Lz =7.0x10% N/m? and the maximum tension is F =900 N, so
r
solving for r gives the minimum radius » = — 900N _64%10™ m. The mass and density are
(7.0x108 N/m?)
fixed, p= %L. so the minimum radius gives the maximum length
r
M 4.0x107° k
=M I0ke _gaom
zrep  m(6.4x107" m)“ (7800 kg/m”)
(b) The fundamental frequency is f; = Lo L F l4 [L Assuming the maximum length of
V720N 4 " 2LNMIL ~ 2N ML®
the string is free to vibrate, the highest fundamental frequency occurs when F =900 N and
1 900 N
== =375 Hz.
f=3 (4.0x1073 kg)(0.40 m)
EVALUATE: Ifthe radius was any smaller the breaking stress would be exceeded. If the radius were greater, so
the stress was less than the maximum value, then the length would be less to achieve the same total mass.
15.79. IDENTIFY: Atanode, y(x,t)=0forallz. y,+ y, isastanding wave if the locations of the nodes don’t depend on ¢.

SET UP: The string is fixed at each end so for all harmonics the ends are nodes. The second harmonic is
the first overtone and has one additional node.

EXECUTE: (a) The fundamental has nodes only at the ends, x =0 and x = L.

(b) For the second harmonic, the wavelength is the length of the string, and the nodes are at
x=0,x=L/2andx=1L.

(c) The graphs are sketched in Figure 15.79.

(d) The graphs in part (c) show that the locations of the nodes and antinodes between the ends vary in time.
EVALUATE: The sum of two standing waves of different frequencies is not a standing wave.
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Figure 15.79

15.80. IDENTIFY: f| = % The buoyancy force B that the water exerts on the object reduces the tension in the

wire. B= pﬂuistubmergedg :
SET Up: For aluminum, p, =2700 kg/m’. For water, p,, =1000 kg/m®. Since the sculpture is
completely submerged, V Vobject =V

submerged —
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f;llr fW

Vall‘ VW

submerged is f, = fu; [v_w} with f,;, =250.0 Hz. v= \/: so = / . When the sculpture is in
Vair Vair
air, F;; = w=mg = p,Vg. When the sculpture is submerged in water, F,, =w—B=(p, — p,,)Vg.

EXECUTE: (a) L is constant, so and the fundamental frequency when the sculpture is

3

Yw_ PPy gng f,, =(250.0 Hz) /1—M ~198 Hz.

Vair Pa 2700 kg/m
(b) The sculpture has a large mass and therefore very little displacement.

EVALUATE: We have neglected the buoyant force on the wire itself.

15.81. IDENTIFY: When the rock is submerged in the liquid, the buoyant force on it reduces the tension in the
wire supporting it. This in turn changes the frequency of the fundamental frequency of the vibrations of the
wire. The buoyant force depends on the density of the liquid (the target variable). The vertical forces on the
rock balance in both cases, and the buoyant force is equal to the weight of the liquid displaced by the rock
(Archimedes’s principle).

SET UP: The wave speed is v = \/E and v=fA B=p;g. ZF, =0.
u

EXECUTE: A=2L=6.00 m. In air,v= f1=(42.0 Hz)(6.00 m) =252 m/s. v= \/E S0
U

= 52 = L()Nz =0.002583 kg/m. In the liquid, v= /A =(28.0 Hz)(6.00 m) =168 m/s.
V2 (252 m/s)
F = uv? =(0.002583 kg/m)(168 m/s)> =72.90 N. F +B—mg=0.
m _ (164.0 N/9.8 m/s)
P 3200 kg/m>

B=mg—-F=1640N-729 N=91.10 N. For the rock, V' =— =5.230x107> m°>.

B 91.10 N
Vieek€  (5.230x107> m®)(9.8 m/s?)

EVALUATE: This liquid has a density 1.78 times that of water, which is rather dense but not impossible.
15.82. IpENTIFY: Compute the wavelength from the length of the string. Use Eq. (15.1) to calculate the wave
speed and then apply Eq. (15.13) to relate this to the tension.

(a) SET UP: The tension F'is related to the wave speed by v=+/F/u (Eq. (15.13)), so use the information
given to calculate v.

B = piigVrockg and pyq = =1.78x10° kg/m’>,

EXECUTE: A/2=L
A=2L=2(0.600m)=1.20 m

fundamental

Figure 15.82

v=fA=(654 Hz)(1.20 m)="78.5 m/s
u=m/L=14.4%10"> kg/0.600 m = 0.024 kg/m
Then F = uv? =(0.024 kg/m)(78.5 m/s)> =148 N.
() SETUP: F=mv* and v=f1 give F=uf?A%

M is a property of the string so is constant.
A is determined by the length of the string so stays constant.

U, A constant implies F/f? = uA* =constant, so Fl/fl2 = Fz/fzz.
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EXECUTE: F,=F f2 = (148 N) 734 Hz )’ =186 N.
f 65.4 Hz
The percent change in F'is F—h = 186 N 148 N =0.26=26%.
K 148 N

EVALUATE: The wave speed and tension we calculated are similar in magnitude to values in the
examples. Since the frequency is proportional to JF, a26% increase in tension is required to produce a

13% increase in the frequency.
15.83.  IDENTIFY: Stressis F/A, where F is the tension in the string and A is its cross-sectional area.

SETUP: A =7r>. Fora string fixed at each end, h= /
2L 2L

EXECUTE: (a) The cross-section area of the string would be 4 = (900 N)/ (7.0><108 Pa)= 1.29%107° m?
corresponding to a radius of 0.640 mm. The length is the volume divided by the area, and the volume is

V =mlp, so
-3
p=L-mp_ 0010 k) _g40m,
A4 A4 (7.8x10° kg/m®)(1.29%107° m?)
1 900 N
(b) For the maximum tension of 900 N, f; = 3 =375 Hz, or 380 Hz to two
(4.00x107" kg)(0.40 m)

figures.

EVALUATE: The string could be shorter and thicker. A shorter string of the same mass would have a
higher fundamental frequency.
15.84.  IDENTIFY: Apply 2F, =0 to segments of the cable. The forces are the weight of the diver, the weight of

the segment of the cable, the tension in the cable and the buoyant force on the segment of the cable and on
the diver.
SET UP: The buoyant force on an object of volume ¥ that is completely submerged in water is

B = pyaerg
EXECUTE: (a) The tension is the difference between the diver’s weight and the buoyant force,

F =(m— pyae?)g = (120 kg — (1000 kg/m*)(0.0800 m*))(9.80 m/s?) =392 N.

(b) The increase in tension will be the weight of the cable between the diver and the point at x, minus the
buoyant force. This increase in tension is then

(ux — p(Ax))g = (1.10 kg/m — (1000 kg/m>)7z(1.00x107% m)?)(9.80 m/s?)x = (7.70 N/m)x. The tension as
a function of x is then F(x)=(392 N)+(7.70 N/m)x.
(c) Denote the tension as F(x) = Fj +ax, where Fy =392 N and a =7.70 N/m. Then the speed of

. . dx .
transverse waves as a function of x is v= 7 =,/(Fy +ax)/u and the time ¢ needed for a wave to reach the
t

surface is found from ¢ = Idt = .[ o J. \/F —
X 0 ax

Let the length of the cable be L, sot—\/7J. \/— \/7 1/F0+ax|0— K Fy+al - \/7)

_2l.10kg/m

7.70 N/m
EVALUATE: Ifthe weight of the cable and the buoyant force on the cable are neglected, then the tension would

have the constant value calculated in part (a). Then v = r = 32N =189 m/s and ¢ = L =5.29s.
y7i 1.10 kg/m v

The weight of the cable increases the tension along the cable and the time is reduced from this value.

(4/392 N +(7.70 N/m)(100 m) —~/392 N) =3.89 s.
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15.85.

IDENTIFY: Carry out the analysis specified in the problem.
SET UP: The kinetic energy of a very short segment Axis AK = %(Am)vi. v, =dy/dt. The work done by

the tension is F times the increase in length of the segment. Let the potential energy be zero when the
segment is unstretched.

1/2)Amv?, 2
EXECUTE: (a) ukz%z%zéﬂ(%) .

(b) % = wA sin(kx — o) and so uy = % U A% sin® (kx — wt).

. . . ) L
(¢) The piece has width Ax and height Axa—y, and so the length of the piece is
X

212 ,\1/2 5
[(AX)2 + (Axg—y] ] = Ax{l + [3—))) ] = A){l + %[g—y] }, where the relation given in the hint has
X X X

been used.
Ax[l + %(ay/axﬂ ~Ax

2
:_F(a_yj |
Ax 2 \ox

(e) g—z =—kA sin(kx — wt), and so u, = %szAz sin? (kx — ).

(d) u,=F

(f) Comparison with the result of part (c) with K=’ = o’ W/F shows that for a sinusoidal wave

Uy =u,.

() The graph is given in Figure 15.85. In this graph, u; and u, coincide, as shown in part (f). At y =0,
the string is stretched the most, and is moving the fastest, so ujand u,, are maximized. At the extremes of y,

the string is unstretched and is not moving, so u, and u, are both at their minimum of zero.
. . )
(h) w, +uy, = Fk* 4” sin” (kx — ot) = Fk(w/v) A’sin® (kx - f) = —.
v

EVALUATE: The energy density travels with the wave, and the rate at which the energy is transported is
the product of the density per unit length and the speed.

Figure 15.85
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